josh
12-05-2012, 05:59 PM
A couple interesting studies on Betaine..
A VERY under rated supplement IMO
Ergogenic effects of betaine supplementation on strength and power performance.
ABSTRACT: BACKGROUND: We investigated the ergogenic effects of betaine (B) supplementation on strength and power performance. Methods: Twelve men (mean SD age, 21 3 yr; mass, 79.1 10.7 kg) with a minimum of 3 months resistance training completed two 14-day experimental trials separated by a 14-day washout period, in a balanced, randomized, double-blind, repeated measures, crossover design. Prior to and following 14 days of twice daily B or placebo (P) supplementation, subjects completed two consecutive days (D1 and D2) of a standardized high intensity strength/power resistance exercise challenge (REC). Performance included bench, squat, and jump tests. Results: Following 14-days of B supplementation, D1 and D2 bench throw power (1779 90 and 1788 +/- 34 W, respectively) and isometric bench press force (2922 297 and 2503 +/- 28 N, respectively) were increased (p < 0.05) during REC compared to pre-supplementation values (1534 +/- 30 and 1498 +/- 29 W, respectively; 2345 +/- 64 and 2423 +/-84 N, respectively) and corresponding P values (1374 +/- 128 and 1523 +/- 39 W; 2175 +/- 92 and 2128 +/- 56 N, respectively). Compared to pre-supplementation, vertical jump power and isometric squat force increased (p < 0.05) on D1 and D2 following B supplementation. However, there were no differences in jump squat power or the number of bench press or squat repetitions. Conclusion: B supplementation increased power, force and maintenance of these measures in selected performance measures, and these were more apparent in the smaller upper-body muscle groups.
PMID: 20642826
Effect of betaine supplementation on power performance and fatigue.
ABSTRACT: BACKGROUND: The purpose of this study was to examine the efficacy of 15 days of betaine supplementation on muscle endurance, power performance and rate of fatigue in active college-aged men. METHODS: Twenty-four male subjects were randomly assigned to one of two groups. The first group (BET; 20.4 +/- 1.3 years; height: 176.8 +/- 6.6 cm; body mass: 77.8 +/- 13.4 kg) consumed the supplement daily, and the second group (PL; 21.4 +/- 4.7 years; height: 181.3 +/- 5.9 cm; body mass: 83.3 +/- 5.2 kg) consumed a placebo. Subjects were tested prior to the onset of supplementation (T1) and 7 (T2) and 14 days (T3) following supplementation. Each testing period occurred over a 2-day period. During day one of testing subjects performed a vertical jump power (VJP) and a bench press throw (BPT) power test. In addition, subjects were required to perform as many repetitions as possible with 75% of their 1-RM in both the squat and bench press exercises. Both peak and mean power was assessed on each repetition. On day two of testing subjects performed two 30-sec Wingate anaerobic power tests (WAnT), each test separated by a 5-min active rest. RESULTS: No differences were seen at T2 or T3 in the repetitions performed to exhaustion or in the number of repetitions performed at 90% of both peak and mean power between the groups in the bench press exercise. The number of repetitions performed in the squat exercise for BET was significantly greater (p < 0.05) than that seen for PL at T2. The number of repetitions performed at 90% or greater of peak power in the squat exercise was significantly greater for BET at both T2 and T3 than PL. No differences in any power assessment (VJP, BPT, WAnT) was seen between the groups CONCLUSION: Two-weeks of betaine supplementation in active, college males appeared to improve muscle endurance of the squat exercise, and increase the quality of repetitions performed.
PMID: 19250531
Technologies for the control of fat and lean deposition in livestock.
Abstract
When the ratio of lean to fat deposition is improved, so is feed conversion efficiency. Net benefits may include lower production costs, better product quality, less excretion of nitrogenous wastes into the environment, decreased grazing pressure on fragile landscapes, and reduced pressure on world feed supplies. However, finding a way to achieve these goals that is reliable, affordable, and acceptable to the majority of consumers has proved to be a major challenge. Since the European Union banned hormonal growth promoters (HGPs) 15 years ago, countries such as Australia and the United States have licensed new products for livestock production, including bovine growth hormone (GH), porcine and equine GH, and the beta-agonist ractopamine. There has also been considerable research into refining these products, as well as developing new technologies. Opportunities to improve beta-agonists include lessening their effects on meat toughness, reducing adverse effects on treated animals, and prolonging their duration of action. In the last regard, the combined use of a beta-agonist with GH, which upregulates beta-adrenoceptors, can produce an outstanding improvement in carcass composition and feed efficiency. Insulin-like growth factor-1 (IGF-1) mediates many of the actions of GH, but has proved to be of more use as a growth reporter/selection marker in pigs, than as a viable treatment. However, a niche for this product could exist in the manipulation of neonatal growth, causing a life-long change in lean:fat ratio. Another significant advance in endocrinology is the discovery of hormones secreted by muscle and fat cells, that regulate feed intake, energy metabolism, and body composition. Leptin, adiponectin and myostatin were discovered through the study of genetically obese, or double-muscled animals. Through genetic manipulation, there is potential to exploit these findings in a range of livestock species, although the production of transgenic animals is still hampered by the poor level of control over gene expression, and faces an uphill battle over consumer acceptance. There are several alternatives to HGPs and transgenics, that are more likely to gain world-wide acceptance. Genetic selection can be enhanced by using markers for polymorphic genes that control fat and lean, such as thyroglobulin, or the callipyge gene. Feed additives of natural origin, such as betaine, chromium and conjugated linoleic acid, can improve the fat:lean ratio under specific circumstances. Additionally, 'production vaccines' have been developed, which alter the neuro-endocrine system by causing an auto-immune response. Thus, antibodies have been used to neutralise growth-limiting factors, prolong the half-life of anabolic hormones, or activate hormone receptors directly. Unfortunately, none of these technologies is sufficiently well advanced yet to rival the use of exogenous HGPs in terms of efficacy and reliability. Therefore, further research is needed to find ways to control fat and lean deposition with due consideration of industry needs, animal welfare and consumer requirements.
Effect of dietary betaine on nutrient utilization and partitioning in the young growing feed-restricted pig.
Abstract
The purpose of this study was to examine the effects of dietary betaine over a range of concentrations (between 0 and 0.5%) on growth and body composition in young feed-restricted pigs. Betaine is associated with decreased lipid deposition and altered protein utilization in finishing pigs, and it has been suggested that the positive effects of betaine on growth and carcass composition may be greater in energy-restricted pigs. Thirty-two barrows (36 kg, n = 8 pigs per group) were restrictively fed one of four corn-soybean meal-skim milk based diets (18.6% crude protein, 3.23 Mcal ME/kg) and supplemented with 0, 0.125, 0.25, or 0.5% betaine. Feed allotment was adjusted weekly according to BW, such that average feed intake was approximately 1.7 kg for all groups. At 64 kg, pigs were slaughtered and visceral tissue was removed and weighed. Carcasses were chilled for 24 h to obtain carcass measurements. Subsequently, one-half of each carcass and whole visceral tissue were ground for chemical analysis. Linear regression analysis indicated that, as betaine content of the diet was elevated from 0 to 0.5%, carcass fat concentration (P = 0.06), P3 fat depth (P = 0.14) and viscera weight (P = 0.129) were decreased, whereas total carcass protein (P = 0.124), protein deposition rate (P = 0.98), and lean gain efficiency (P = 0.115) were increased. The greatest differences over control pigs were observed in pigs consuming 0.5% betaine, where carcass fat concentration and P3 fat depth were decreased by 10 and 26%, respectively. Other fat depth measurements were not different (P > 0.15) from those of control pigs. In addition, pigs consuming the highest betaine level had a 19% increase in the carcass protein:fat ratio, 23% higher carcass protein deposition rate, and a 24% increase in lean gain efficiency compared with controls. Dietary betaine had no effects (P > 0.15) on growth performance, visceral tissue chemical composition, carcass fat deposition rate, visceral fat and protein deposition rates, or serum urea and ammonia concentrations. These data suggest that betaine alters nutrient partitioning such that carcass protein deposition is enhanced at the expense of carcass fat and in part, visceral tissue.
PMID: 11881930
Effect of betaine supplementation on plasma nitrate/nitrite in exercise-trained men.
Abstract
ABSTRACT:
BACKGROUND:
Betaine, beetroot juice, and supplemental nitrate have recently been reported to improve certain aspects of exercise performance, which may be mechanistically linked to increased nitric oxide. The purpose of the present study was to investigate the effect of betaine supplementation on plasma nitrate/nitrite, a surrogate marker or nitric oxide, in exercise-trained men.
METHODS:
We used three different study designs (acute intake of betaine at 1.25 and 5.00 grams, chronic intake of betaine at 2.5 grams per day for 14 days, and chronic [6 grams of betaine per day for 7 days] followed by acute intake [6 grams]), all involving exercise-trained men, to investigate the effects of orally ingested betaine on plasma nitrate/nitrite. Blood samples were collected before and at 30, 60, 90, and 120 min after ingestion of 1.25 and 5.00 grams of betaine (Study 1); before and after 14 days of betaine supplementation at a dosage of 2.5 grams (Study 2); and before and after 7 days of betaine supplementation at a dosage of 6 grams, followed by acute ingestion of 6 grams and blood measures at 30 and 60 min post ingestion (Study 3).
RESULTS:
In Study 1, nitrate/nitrite was relatively unaffected and no statistically significant interaction (p = 0.99), dosage (p = 0.69), or time (p = 0.91) effects were noted. Similar findings were noted in Study 2, with no statistically significant interaction (p = 0.57), condition (p = 0.98), or pre/post intervention (p = 0.17) effects noted for nitrate/nitrite. In Study 3, no statistically significant changes were noted in nitrate/nitrite between collection times (p = 0.97).
CONCLUSION:
Our data indicate that acute or chronic ingestion of betaine by healthy, exercise-trained men does not impact plasma nitrate/nitrite. These findings suggest that other mechanisms aside from increasing circulating nitric oxide are likely responsible for any performance enhancing effect of betaine supplementation.
PMID:21414230
A VERY under rated supplement IMO
Ergogenic effects of betaine supplementation on strength and power performance.
ABSTRACT: BACKGROUND: We investigated the ergogenic effects of betaine (B) supplementation on strength and power performance. Methods: Twelve men (mean SD age, 21 3 yr; mass, 79.1 10.7 kg) with a minimum of 3 months resistance training completed two 14-day experimental trials separated by a 14-day washout period, in a balanced, randomized, double-blind, repeated measures, crossover design. Prior to and following 14 days of twice daily B or placebo (P) supplementation, subjects completed two consecutive days (D1 and D2) of a standardized high intensity strength/power resistance exercise challenge (REC). Performance included bench, squat, and jump tests. Results: Following 14-days of B supplementation, D1 and D2 bench throw power (1779 90 and 1788 +/- 34 W, respectively) and isometric bench press force (2922 297 and 2503 +/- 28 N, respectively) were increased (p < 0.05) during REC compared to pre-supplementation values (1534 +/- 30 and 1498 +/- 29 W, respectively; 2345 +/- 64 and 2423 +/-84 N, respectively) and corresponding P values (1374 +/- 128 and 1523 +/- 39 W; 2175 +/- 92 and 2128 +/- 56 N, respectively). Compared to pre-supplementation, vertical jump power and isometric squat force increased (p < 0.05) on D1 and D2 following B supplementation. However, there were no differences in jump squat power or the number of bench press or squat repetitions. Conclusion: B supplementation increased power, force and maintenance of these measures in selected performance measures, and these were more apparent in the smaller upper-body muscle groups.
PMID: 20642826
Effect of betaine supplementation on power performance and fatigue.
ABSTRACT: BACKGROUND: The purpose of this study was to examine the efficacy of 15 days of betaine supplementation on muscle endurance, power performance and rate of fatigue in active college-aged men. METHODS: Twenty-four male subjects were randomly assigned to one of two groups. The first group (BET; 20.4 +/- 1.3 years; height: 176.8 +/- 6.6 cm; body mass: 77.8 +/- 13.4 kg) consumed the supplement daily, and the second group (PL; 21.4 +/- 4.7 years; height: 181.3 +/- 5.9 cm; body mass: 83.3 +/- 5.2 kg) consumed a placebo. Subjects were tested prior to the onset of supplementation (T1) and 7 (T2) and 14 days (T3) following supplementation. Each testing period occurred over a 2-day period. During day one of testing subjects performed a vertical jump power (VJP) and a bench press throw (BPT) power test. In addition, subjects were required to perform as many repetitions as possible with 75% of their 1-RM in both the squat and bench press exercises. Both peak and mean power was assessed on each repetition. On day two of testing subjects performed two 30-sec Wingate anaerobic power tests (WAnT), each test separated by a 5-min active rest. RESULTS: No differences were seen at T2 or T3 in the repetitions performed to exhaustion or in the number of repetitions performed at 90% of both peak and mean power between the groups in the bench press exercise. The number of repetitions performed in the squat exercise for BET was significantly greater (p < 0.05) than that seen for PL at T2. The number of repetitions performed at 90% or greater of peak power in the squat exercise was significantly greater for BET at both T2 and T3 than PL. No differences in any power assessment (VJP, BPT, WAnT) was seen between the groups CONCLUSION: Two-weeks of betaine supplementation in active, college males appeared to improve muscle endurance of the squat exercise, and increase the quality of repetitions performed.
PMID: 19250531
Technologies for the control of fat and lean deposition in livestock.
Abstract
When the ratio of lean to fat deposition is improved, so is feed conversion efficiency. Net benefits may include lower production costs, better product quality, less excretion of nitrogenous wastes into the environment, decreased grazing pressure on fragile landscapes, and reduced pressure on world feed supplies. However, finding a way to achieve these goals that is reliable, affordable, and acceptable to the majority of consumers has proved to be a major challenge. Since the European Union banned hormonal growth promoters (HGPs) 15 years ago, countries such as Australia and the United States have licensed new products for livestock production, including bovine growth hormone (GH), porcine and equine GH, and the beta-agonist ractopamine. There has also been considerable research into refining these products, as well as developing new technologies. Opportunities to improve beta-agonists include lessening their effects on meat toughness, reducing adverse effects on treated animals, and prolonging their duration of action. In the last regard, the combined use of a beta-agonist with GH, which upregulates beta-adrenoceptors, can produce an outstanding improvement in carcass composition and feed efficiency. Insulin-like growth factor-1 (IGF-1) mediates many of the actions of GH, but has proved to be of more use as a growth reporter/selection marker in pigs, than as a viable treatment. However, a niche for this product could exist in the manipulation of neonatal growth, causing a life-long change in lean:fat ratio. Another significant advance in endocrinology is the discovery of hormones secreted by muscle and fat cells, that regulate feed intake, energy metabolism, and body composition. Leptin, adiponectin and myostatin were discovered through the study of genetically obese, or double-muscled animals. Through genetic manipulation, there is potential to exploit these findings in a range of livestock species, although the production of transgenic animals is still hampered by the poor level of control over gene expression, and faces an uphill battle over consumer acceptance. There are several alternatives to HGPs and transgenics, that are more likely to gain world-wide acceptance. Genetic selection can be enhanced by using markers for polymorphic genes that control fat and lean, such as thyroglobulin, or the callipyge gene. Feed additives of natural origin, such as betaine, chromium and conjugated linoleic acid, can improve the fat:lean ratio under specific circumstances. Additionally, 'production vaccines' have been developed, which alter the neuro-endocrine system by causing an auto-immune response. Thus, antibodies have been used to neutralise growth-limiting factors, prolong the half-life of anabolic hormones, or activate hormone receptors directly. Unfortunately, none of these technologies is sufficiently well advanced yet to rival the use of exogenous HGPs in terms of efficacy and reliability. Therefore, further research is needed to find ways to control fat and lean deposition with due consideration of industry needs, animal welfare and consumer requirements.
Effect of dietary betaine on nutrient utilization and partitioning in the young growing feed-restricted pig.
Abstract
The purpose of this study was to examine the effects of dietary betaine over a range of concentrations (between 0 and 0.5%) on growth and body composition in young feed-restricted pigs. Betaine is associated with decreased lipid deposition and altered protein utilization in finishing pigs, and it has been suggested that the positive effects of betaine on growth and carcass composition may be greater in energy-restricted pigs. Thirty-two barrows (36 kg, n = 8 pigs per group) were restrictively fed one of four corn-soybean meal-skim milk based diets (18.6% crude protein, 3.23 Mcal ME/kg) and supplemented with 0, 0.125, 0.25, or 0.5% betaine. Feed allotment was adjusted weekly according to BW, such that average feed intake was approximately 1.7 kg for all groups. At 64 kg, pigs were slaughtered and visceral tissue was removed and weighed. Carcasses were chilled for 24 h to obtain carcass measurements. Subsequently, one-half of each carcass and whole visceral tissue were ground for chemical analysis. Linear regression analysis indicated that, as betaine content of the diet was elevated from 0 to 0.5%, carcass fat concentration (P = 0.06), P3 fat depth (P = 0.14) and viscera weight (P = 0.129) were decreased, whereas total carcass protein (P = 0.124), protein deposition rate (P = 0.98), and lean gain efficiency (P = 0.115) were increased. The greatest differences over control pigs were observed in pigs consuming 0.5% betaine, where carcass fat concentration and P3 fat depth were decreased by 10 and 26%, respectively. Other fat depth measurements were not different (P > 0.15) from those of control pigs. In addition, pigs consuming the highest betaine level had a 19% increase in the carcass protein:fat ratio, 23% higher carcass protein deposition rate, and a 24% increase in lean gain efficiency compared with controls. Dietary betaine had no effects (P > 0.15) on growth performance, visceral tissue chemical composition, carcass fat deposition rate, visceral fat and protein deposition rates, or serum urea and ammonia concentrations. These data suggest that betaine alters nutrient partitioning such that carcass protein deposition is enhanced at the expense of carcass fat and in part, visceral tissue.
PMID: 11881930
Effect of betaine supplementation on plasma nitrate/nitrite in exercise-trained men.
Abstract
ABSTRACT:
BACKGROUND:
Betaine, beetroot juice, and supplemental nitrate have recently been reported to improve certain aspects of exercise performance, which may be mechanistically linked to increased nitric oxide. The purpose of the present study was to investigate the effect of betaine supplementation on plasma nitrate/nitrite, a surrogate marker or nitric oxide, in exercise-trained men.
METHODS:
We used three different study designs (acute intake of betaine at 1.25 and 5.00 grams, chronic intake of betaine at 2.5 grams per day for 14 days, and chronic [6 grams of betaine per day for 7 days] followed by acute intake [6 grams]), all involving exercise-trained men, to investigate the effects of orally ingested betaine on plasma nitrate/nitrite. Blood samples were collected before and at 30, 60, 90, and 120 min after ingestion of 1.25 and 5.00 grams of betaine (Study 1); before and after 14 days of betaine supplementation at a dosage of 2.5 grams (Study 2); and before and after 7 days of betaine supplementation at a dosage of 6 grams, followed by acute ingestion of 6 grams and blood measures at 30 and 60 min post ingestion (Study 3).
RESULTS:
In Study 1, nitrate/nitrite was relatively unaffected and no statistically significant interaction (p = 0.99), dosage (p = 0.69), or time (p = 0.91) effects were noted. Similar findings were noted in Study 2, with no statistically significant interaction (p = 0.57), condition (p = 0.98), or pre/post intervention (p = 0.17) effects noted for nitrate/nitrite. In Study 3, no statistically significant changes were noted in nitrate/nitrite between collection times (p = 0.97).
CONCLUSION:
Our data indicate that acute or chronic ingestion of betaine by healthy, exercise-trained men does not impact plasma nitrate/nitrite. These findings suggest that other mechanisms aside from increasing circulating nitric oxide are likely responsible for any performance enhancing effect of betaine supplementation.
PMID:21414230